Погружаясь в глубины TcBase.lib, туда, где живет наш функциональный блок, мы вскоре ударяемся о дно: внутренности блока TON прячутся в толще TwinCAT, а хвост ведет к ядру операционной системы. Как же нам узнать каким образом отсчитываются интервалы времени: банальный счетчик или что-то посерьезнее? У меня есть догадки, и я попробую подойти к вопросу медленно и с другой стороны.
Нафантазируем систему в которой необходимо много таймеров с разными интервалами срабатывания и различными временами старта. Под словом "много" я принимаю порядки 100, 1000, 10'000, ... и чуть позже станет понятно зачем мне необходимо так много.
Для испытаний возьмем CX9020 (ARM, WinCE) и TwinCAT 2, а затем попробуем старшего брата — CX5010 (x86, WinCE) и наконец CX2030 с настольной операционной системой и TwinCAT 3. Для всех тестов настройки будут по умолчанию: базовое время = 1мс, цикл ПЛК-программы = 10мс.
Загрузим тестовую программу в которой каждый цикл обрабатывается очень много таймеров (одновременно):
PROGRAM MAIN VAR CONSTANT HOW_MANY_TONS : UDINT := 100; START_TIME : TIME := t#100ms; NEXT_PLUS : TIME := t#1ms; END_VAR VAR i : UDINT; pt : TIME := START_TIME; timers : ARRAY [1..HOW_MANY_TONS] OF TON; state : UINT; END_VAR [...] CASE state OF 0: FOR i := 1 TO HOW_MANY_TONS DO timers[i](IN:= FALSE, PT := pt); pt := pt + NEXT_PLUS; END_FOR state := 100; 100: FOR i := 1 TO HOW_MANY_TONS DO timers[i](IN:= TRUE); IF timers[i].Q THEN timers[i](IN := FALSE); END_IF END_FOR END_CASE
Делаем срез производительности системы при нулевой активности (программа приостановлена). Нагрузка — максимум 18%. На графике плохо видны пики-выбросы, поэтому кажется что нагрузка чуть меньше, но она есть:
Запускаем 100 таймеров — нагрузка возрастает до 23%:
Предварительный вывод: таймеры нагружают процессор. Увеличиваем порядок до 1000... и система ведет себя неадекватно и небрежно, отнимая время у операционной системы:
Может создаться впечатление, что вызывается слишком много ФБ за один цикл, но на самом деле это не так, и для опровержения я создал ФБ, который интерфейсом повторяет TON, но внутри просто наращивает переменную каждый цикл. Результат совершенно другой: при вызове 1000 имитаций нагрузка не растет, а остается на прежнем уровне 21%.
Вывод: TON не так прост внутри, как снаружи. Внутри ФБ производится какая-то тяжелая работа.
Старшие братья и TwinCAT 3
Можно предположить, что такое поведение свойственно только младшим контроллерам или происходит только на ARM-платформе, но и это не так.
Как более производительный, CX5010 отваливается на 10'000 таймерах. Правда он при этом выдает более ровную нагрузочную кривую, но нам интересно не это. Для CX2030 и настольной операционной системы, можно ожидать лучшего, но там процессор мощнее, поэтому есть рост количества таймеров, но нагрузка все равно ощущается как нечто постороннее. Зато TwinCAT 3 наконец-то не отжирает время у операционной системы. На картинке ниже виден переход от порядка 10'000 к 100'000; система реального времени уже не справляется, но терпеливо держит планку на заданном ограничении 80%:
Объяснение
Похоже, что TON ведет в глубины операционной системы к системным таймерам и может быть даже к высокоточному таймеру HPET. Так что же делать?
Что делать?
Во первых, если от таймеров нужна не сверхточность, а их количество — можно сделать один "продолжительный" таймер и всюду использовать его внутреннее поле ElapsedTime, которое показывает сколько времени прошло с начала запуска таймера... Или может быть сделать свой простой таймер со счетчиком-инкрементом?
Во вторых, зачем вам в проекте столько таймеров? Не забывайте про этот пункт. Я пытаюсь понять из чего сделан TON, а не улучшить его, разработав готовое решение для своих проектов.
Все-таки делаем свой таймер
Попробуем доработать нашу имитацию до полноценного таймера. Я назвала его TONLi, потому что он облегченный (light) и потому, что есть LTON (long, еще более длинный).
FUNCTION_BLOCK TONLi VAR_INPUT IN : BOOL; PT : TIME; TaskIndex : BYTE := 1; END_VAR VAR_OUTPUT Q : BOOL; END_VAR VAR state : BYTE; endCount : UDINT; END_VAR [...] IF IN THEN IF state = 0 THEN Q := FALSE; endCount := SystemTaskInfoArr[TaskIndex].cycleCount + TIME_TO_UDINT(PT) * 10000 / SystemTaskInfoArr[TaskIndex].cycleTime; state := 10; END_IF ELSE state := 0; END_IF IF state = 10 THEN IF SystemTaskInfoArr[TaskIndex].cycleCount >= endCount THEN Q := TRUE; state := 255; END_IF END_IF
Интерфейс почти такой же: на выходе потеряли ElapsedTime (с ним будет чуть медленнее из-за дополнительных расчетов); на входе теперь нужно уточнять номер текущей задачи. Ее можно узнать с помощью функции GETCURTASKINDEX. Об этом чуть позже.
В TwinCAT 3 нужно заменить SystemTaskInfoArr на _TaskInfo и можете убрать ссылку на TcSystem.lib. Подробнее читайте в справочной системе о PlcTaskSystemInfo.
Я все еще сделать немного сложнее, чем можно было: если взять обычный счетчик, то придется вызывать таймер каждый цикл и малейший пропуск собьет весь счет времени. Если же использовать .сycleCount — вы всегда будете знать сколько циклов уже прошло (длина цикла фиксирована еще на этапе настройки системы и не меняется во время работы). В этом наш таймер похож на стандартный TON.
_TaskInfo
Чтобы в случае пропуска циклов, не терять кусок прошедшего времени, нам нужен некий независимый отсчет времени. Его мы возьмем из информации о ПЛК-задаче. В большинстве (но не во всех!) CX-системах эта информация сохраняется в структуре, расположенной в меркерной области памяти. Обратите внимание на комментарий — настоящий адрес структуры может отличаться от приведенного (the real address may differ!):
SystemTaskInfoArr AT %MB32832 (*The real address may differ!*) : ARRAY [1..4] OF SYSTEMTASKINFOTYPE;
Что в этой структуре поможет нам сейчас или пригодится в будущем:
- firstCycle : BOOL — задача запущена и отрабатывает свой первый цикл.
- cycleTime : UDINT — длина цикла заданной ПЛК-задачи в 100 наносекундных отрезках. Если разделить это число на 10'000 — получится значение в миллисекундах.
- lastExecTime : UDINT — количество 100нс интервалов отработанных предыдущим циклом. Не длина предыдущего цикла (эта длина для всех одинакова), а сколько реально он работал. Задача простаивала остаток времени.
- cycleCount : UDINT — необходимый нам счетчик циклов, прошедших с момента старта ПЛК-задачи.
Новый таймер под микроскопом
Будем проводить испытания на CX9020 и 10'000 таймерах:
Все еще работает, а ведь раньше срезался на 1000 штуках. Еще раз: было 100 — стало 10'000. Проверим на CX5010, а лучше сравним TON (левая половина графика) и TONLi (правая половина):
Вряд ли кому-то понадобятся тысячи TON таймеров, но теперь мы точно знаем, что они откусывают по кусочку от нашей производительности.